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Abstract

In this paper, a fluid–structure interaction model for stability analysis of shells conveying fluid is developed. This

model is developed for shells of arbitrary geometry and structure and is based on incompressible potential flow. The

boundary element method is applied to model the potential flow. The fluid dynamics model is derived by using an

inflow/outflow model along with the impermeability condition at the fluid–shell interface. This model is applied to

obtain the flow modes and eigenvalues, which are used for the modal representation of the flow field in the shell. Based

on the mode shapes and natural frequencies of the shell obtained from an FEM model, the modal analysis technique is

used for structural modeling of the shell. Using the linearized Bernoulli equation for unsteady pressure on the fluid–

shell interface in combination with the virtual work principle, the generalized structural forces are obtained in terms of

the modal coordinates of the fluid flow and the coupled field equations of the fluid–structure are derived. The obtained

model is validated by comparison with results in the literature, and very good agreement is demonstrated. Then, some

examples are provided to demonstrate the application of the present model to determining the stability conditions of

shells with arbitrary geometries.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The fluid–structure interaction in shells conveying fluid is considered one of the most important problems in many

industrial applications. Some practical examples of this phenomenon occur in the thin-walled cylindrical shells used as

thermal shields in the aerospace and power-plant industries, monitoring and control tubes, shells used in heat

exchangers and storage tanks, etc. Several studies have been performed on the stability and dynamics of shells

conveying fluid, mainly dealing with circular cylindrical shells. A comprehensive review on the dynamics of pipes and

shells conveying fluid has been presented by Paı̈doussis (1998, 2003) in the form of a two-volume book. Furthermore,

Paı̈doussis and Li (1993) produced a review paper with detailed descriptions of almost all of the existing problems in the

field of fluid–structure interaction in pipes conveying fluid. Modarres-Sadeghi and Paı̈doussis (2009) used a weakly

nonlinear model to study the post-divergence behavior of extensible fluid-conveying pipes supported at both ends.
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Through the method of separation of variables, Paı̈doussis and Denise (1972) presented a traveling-wave-type solution for

clamped and cantilevered shells, without satisfying the pertinent boundary conditions. Weaver and Unny (1973) utilized the

Fourier transform method to determine the stability conditions of a simply supported cylindrical shell. The main difference

between the latter and the former was in the boundary conditions of the outflow. Nguyen et al. (1993) proposed an outflow

model to resolve some numerical issues in the previous models when solving the problems of cylindrical fluid-conveying

shells and demonstrated that the proposed model converged accurately. Amabili et al. (1999b, 2000a, 2000b, 2002) put forth

a comprehensive investigation and review of the linear and nonlinear stability and behavior of circular cylindrical shells

conveying fluid. They made use of nonlinear Donnell’s shallow shell theory in conjunction with linear potential flow theory

to derive their formulation. Amabili and Garziera (2002a) developed the computer program DIVA to analyze the vibrations

of cylindrical shells containing or immersed in axial flow. DIVA was capable of considering a wide range of complex effects

on the vibrations of circular cylindrical shells, including non-uniform boundary conditions; fluid–structure interaction

including both flowing and quiescent fluids as well as internal, external and annular flows; mean radial pressure and initial

pre-stress; an elastic bed at partial extension in the circumferential and longitudinal directions; intermediate constraints and

added masses. By means of the time-mean Navier–Stokes equations, Amabili and Garziera (2002b) improved DIVA to

account for the effects of steady viscous forces on vibrations of shells with internal and annular flow.

Lakis and Laveau (1991) and Selmane and Lakis (1997) used a hybrid finite element method to investigate the nonlinear

vibrations of anisotropic cylindrical shells containing fluid. The former was carried out by assuming Sander’s linear shell

theory and potential flow, while the Bernoulli equation was expanded to the second order. The results showed that in

practice, the nonlinearity of the fluid does not significantly affect the stability conditions and can be neglected. The latter

research was performed by considering the nonlinear Sanders–Koiter shell alongside the linear potential flow formulation.

Using potential flow theory with Sander’s nonlinear theory of thin shells, Zhang et al. (2001) presented a finite element

model for investigating fluid–structure vibrations of thin-walled orthotropic cylindrical shells. They also considered the

geometric stiffness of the structure due to hydrostatic pressure and initial stress. Hansson and Sandberg (2001) developed

a finite element model for fluid–structure interaction in shells by combining an axisymmetric shell element and a one-

dimensional fluid element. Kochupillai et al. (2002) employed a semi-analytical finite element formulation in developing

model reduction techniques for the analysis of parametric instabilities in flexible pipes conveying fluids under a mean

pressure. Kumar and Ganesan (2008) proposed a semi-analytical finite element method for stability analysis of conical

fluid-conveying shells and conducted some studies on the critical fluid velocity for conical shells with different cone angles

and boundary conditions. Using a coupled boundary-element/finite-element model (BEM-FEM), Shekari et al. (2009)

considered the fluid–structure interaction in seismically isolated cylindrical liquid storage tanks. Paı̈doussis (2005)

reviewed some unresolved issues and paradoxes in fluid–structure interaction problems in fluid-conveying pipes and shells.

Karagiozis et al. (2005) presented experimental results on the nonlinear dynamics and stability characteristics of thin-

walled clamped–clamped circular cylindrical shells. The experiments were carried out for elastomer shells in annular air-

flow, elastomer shells with internal air-flow, and aluminum and plastic cylindrical shells with internal water-flow. They

discovered a softening nonlinear behavior, with a large hysteresis in the velocity for the onset and cessation of divergence.

Karagiozis et al. (2007) investigated the effect of varying the thickness-to-radius and length-to-radius ratios on the

stability margin of cylindrical shells conveying fluid. They showed that the system loses stability by a subcritical pitchfork

bifurcation, leading to a stable divergence of increasing amplitude with increasing flow speed. Also, Karagiozis et al.

(2008) used the Donnell nonlinear shallow shell equations along with linear potential flow theory to investigate the

stability and nonlinear behavior of thin, clamped, cylindrical shells. They compared their analytical results with

experiments and achieved good qualitative and reasonable quantitative agreement.

Almost all of the existing studies in this area are focused on solving the problem of circular cylindrical shells with the

aid of analytical methods. Some researchers have also employed the finite element method to develop fluid–structure

interaction models for stability analysis of cylindrical and conical shells conveying fluid. This paper aims to develop a

fluid–structure interaction model for shells with arbitrary geometry and structure. The boundary element method is

utilized with the potential flow model for fluid dynamics modeling, and the structural model is obtained via the modal

analysis technique combined with the finite element model of an arbitrary structure.
2. Structural dynamics

Shell structures are considered important components in many engineering applications, and a number of studies

have been performed on the structural dynamics of these shells. Several theories, in both the linear and non-linear

domains, for structural dynamics modeling of shells have been presented, considering the effect of thickness, material

properties, etc. Despite all of their advantages, the analytical solutions of the problem of shell vibration are limited to

simple geometries and cannot be applied to any arbitrary problem. However, numerical techniques, such as the finite
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element method (FEM), have been used without such limitations. In general, the governing equation of structural

motion in the FEM can be expressed as

MS
€d þ CS

_d þ KSd¼ f; ð1Þ

where MS, CS and KS are the structural mass, damping and stiffness matrices, respectively. Furthermore, vector d

stands for the nodal displacements and rotations and f represents the nodal forces and moments.

The FEM can be used with the modal analysis technique to obtain a reduced-order model of the structural dynamics of the

shell. The modal expansion of the elastic displacements vector e, and rotations h of the shell at each point can be written as

e¼
XNS

n ¼ 1

enxnðtÞ; h¼
XNS

n ¼ 1

hnxnðtÞ; ð2; 3Þ

where NS is the number of structural modes and en and hn are the natural mode shapes of the elastic displacements and

rotations, respectively. The mode shapes of the natural vibrations can be calculated simply by using the finite element model

along with the standard eigen-analysis methods. The governing equation of the generalized modal coordinates n is obtained

using the Lagrange equations and Galerkin’s method as follows:

€n þ C _n þXn¼ s; ð4Þ

in which C and X are the diagonal modal damping and stiffness matrices, defined as Cn;n ¼ 2znon and Xn;n ¼o2
n, where zn

and on are the damping ratio and natural frequency of the nth mode, respectively. Furthermore, s denotes the vector of

generalized structural forces. In general, the natural modes with lower natural frequencies are the major contributors to the

structural motion; hence, a system of equations (4) can precisely predict the dynamic behavior of the structure with a small

number of the lower frequency modes, truncating the modes at higher frequencies.

3. Fluid dynamics

3.1. Governing equations

Consider a flexible shell with arbitrary geometry and supports, conveying fluid as shown in Fig. 1(a). Assuming

incompressible flow in the shell, the Navier–Stokes equations governing the flow field are expressed as

r � v¼ 0; ð5Þ

_v þ ðv � rÞv¼�
1

r
rpþ nr2v; ð6Þ

where v is the flow velocity, r is the fluid density, n is the kinematic viscosity and p is the hydrodynamic pressure. If the

viscous terms in Eq. (6) are neglected, the flow field can be described using a velocity potential f, from which the

velocity can be written as

v¼rf: ð7Þ

Assuming small elastic vibrations of the shell, the potential f can be decomposed into two components: the zeroth-order

steady potential fð0Þ due to the mean flow and the first-order unsteady component fð1Þ associated with the shell motion, i.e.,

f¼fð0Þ þ efð1Þ; ð8Þ

where e is a small parameter that is merely used to signify the order of magnitude. The zeroth- and first-order potentials

satisfy the Laplace equation, i.e.,

r2fð0Þ ¼ 0; r2fð1Þ ¼ 0: ð9; 10Þ

3.2. The wall boundary condition

The impermeability of the shell wall yields the following boundary condition at the fluid–shell interface:

rf � n¼ ee � n; ð11Þ

where the shell motion is assumed to be of the first order of magnitude, and n represents the outward unit normal vector

of the shell, which consists of two components

n¼ nð0Þ þ enð1Þ; ð12Þ
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where n(0) is the normal vector of the undeformed shell, and n
(1) is the small variation of n(0) due to the deformation of

the shell. Assuming small elastic rotations of the shell, the vector n(1) can be obtained as

nð1Þ ¼ h� nð0Þ: ð13Þ

Substituting Eqs. (8) and (12) into Eq. (11) and choosing the terms with identical orders of magnitude, the wall

boundary conditions for fð0Þ and fð1Þ can be derived as

rfð0Þ � nð0Þjwall ¼ 0; ð14Þ

rfð1Þ � nð0Þjwall ¼ ð_e � n
ð0Þ�rfð0Þ � nð1ÞÞ: ð15Þ

3.3. The inflow/outflow boundary conditions

The actual behavior of the fluid at the inlet and outlet of the shell, and its contribution to the physics of the problem

are unresolved issues in the field of fluid–structure interaction in shells conveying flow (Paı̈doussis, 2005). There are

some solutions, which are based either on the Fourier transform generalized-force method with the assumption of zero

flow perturbations beyond the shell domain (Weaver and Unny, 1973) or the traveling-wave form of the solution, in

which the waves continue indefinitely both up and downstream (Paı̈doussis and Denise, 1972).

For an actual fluid, if a perturbation in the steady flow inside the shell is generated, it will be damped quickly in the

upstream region, and thus a constant inflow boundary can be considered a short distance Li from the shell inlet

(Figs. 1(a) and (b)). The perturbation propagates downstream, and it can be assumed that at a distance far enough from

the shell outlet, the pressure gradient and the viscous forces in the right-hand side of Eq. (6) are balanced. For inviscid

flow, this balanced condition is identical with either a fully developed pressure field in the outflow or a pressure gradient

equal to zero. In both cases, the outflow boundary condition can be obtained based on the fact that the flow is fully

developed at the outflow, and the fluid particles do not accelerate. In other words, an outflow boundary can be assumed

at a distance Lo far enough from the shell outlet that the left-hand side of Eq. (6) is zero (Figs. 1(a) and (b)).

The constant inflow boundary condition is expressed as

rf � n¼ vi; ð16Þ

where vi is the inflow velocity. The outflow boundary condition is obtained by setting the right-hand side of Eq. (6)

equal to zero, namely,

_v þ ðv � rÞv¼ 0: ð17Þ

Note that the convective acceleration ðv � rÞv may also be written in the following form:

ðv � rÞv¼ 1
2
rjvj2�v� ðr � vÞ: ð18Þ

For potential flow, the curl of the velocity vanishes, and thus substituting Eq. (7) into (17) yields

rð _f þ 1
2
jrfj2Þ ¼ 0: ð19Þ

Substituting Eq. (8) into Eq. (16) yields the following inflow boundary conditions:

rfð0Þ � nð0Þjinflow ¼ vi; rf
ð1Þ
� nð0Þjinflow ¼ 0: ð20; 21Þ

According to the principle of mass conservation, the outflow boundary condition for fð0Þ is

rfð0Þ � nð0Þjoutflow ¼ kvi; ð22Þ

where k is the ratio of the outflow area to the inflow area. Introducing Eq. (8) into (19) yields

ð _f
ð0Þ
þ e _f

ð1Þ
Þ þ 1

2
ðr _f

ð0Þ
þ er _f

ð1Þ
Þ � ðrfð0Þ þ erfð1ÞÞ ¼ ð _f

ð0Þ
þ 1

2
jrfð0Þj2Þ þ ð _f

ð1Þ
þ rfð0Þ � rfð1ÞÞe

þh:o:t:¼ const: ð23Þ

Balancing the terms at equal orders of e in Eq. (23) and using Eq. (22) results in the following outflow boundary

condition for fð1Þ:

ð _f
ð1Þ
þ kvirfð1Þ � nð0ÞÞjoutflow ¼ 0; ð24Þ

which implies that the first-order potential wave propagates across the outflow boundary with a velocity of kvi.



Fig. 1. Schematic figure of flow field and boundaries.
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The walls across the inflow boundary near the shell inlet and those across the shell outlet near the outflow boundary

are assumed to be rigid walls, namely

rfð0Þ � nð0Þjr:wall ¼rf
ð1Þ
� nð0Þjr:wall ¼ 0: ð25Þ

3.4. Boundary element modeling

Among the available numerical methods, the boundary element method (BEM) has turned out to be quite popular and

has found thriving applications in potential flow problems. Meshing and discretizing the boundaries instead of discretizing

the entire fluid domain, and thus cutting down on the necessary memory and computation time, is one of the primary

reasons that the BEM is preferred over other methods. For fluid and solid interaction (FSI) problems, one only needs to

calculate the fluid data on the fluid–structure interface; hence, another major advantage of using the BEM in FSI problems is

that the governing equations of fluid motion are represented only at the boundaries, which reduces unnecessary calculations,

such as the velocity or pressure fields inside the fluid domain, that are inevitable in other numerical techniques like the FEM.

In this section, we present the formulation and preliminaries of the BEM to derive the governing equations of the

fluid flow in the shell. The solution of the Laplace equation over an unbounded region for a source point of unit

strength is the free-space Green’s function of the problem. For a three-dimensional space, it is

f� ¼
1

4pr
; ð26Þ

where r is the distance from the source point. Applying Green’s second identity to the flow region bounded externally by

surface S and excluding the sphere of radius e about point p (see Fig. 2), one obtainsZ
V�Ve

ðfr2f��f�r2fÞdV ¼

Z
S

ðfq��f�qÞdS þ

Z
Se

ðfq��f�qÞdS¼ 0; ð27Þ
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where q¼ @f=@n and q� ¼ @f�=@n. After some mathematical simplifications assuming that f and q are well-behaved

functions, the following integral equation is derived from Eq. (27):

cpfp þ

Z
S

ðfq��f�qÞdS¼ 0; ð28Þ

cp ¼
w
4p
; ð29Þ

where w represents the internal spatial angle viewed from the source point p. If the source point is located on a smooth

and flat boundary, then w¼ 2p, and for points inside the flow domain, w¼ 4p.
Eq. (28) can be solved numerically by discretizing the fluid boundary into small elements and calculating the

boundary integrals over them, as follows:

cifi þ
Xm

j ¼ 1

Z
Sj

ðq�i fj�f
�
i qjÞdSj ¼ 0; ð30Þ

where m is the number of all boundary elements. The potential and flux density at any point in each element can be

approximated by their nodal values by using appropriate interpolation functions.

f¼Njuj ; q¼Njqj ; ð31; 32Þ

where Nj is a row matrix containing the element shape functions, and uj and qj are the vectors of nodal potential and

flux through the jth element, respectively. Introducing Eqs. (31) and (32) into Eq. (30) and transforming the global

coordinate system into the local coordinate system of the boundary elements (x1, x2) yields

cifi þ
Xm

j ¼ 1

ðHijuj�GijqjÞ ¼ 0; ð33Þ

in which

Hij ¼

Z 1

�1

Z 1

�1

q�i NjjJjjdx1 dx2; ð34Þ

Gij ¼

Z 1

�1

Z 1

�1

f�i NjjJjjdx1 dx2; ð35Þ

where jJj j is the determinant of the Jacobian matrix of the transformation from the global Cartesian system to the local

coordinate system of the element. Using the point collocation method, Eq. (33) can be evaluated at all boundary nodes

and written in the following matrix form:

Au�Bq¼ 0; ð36Þ
Fig. 2. Schematic figure of flow field and boundaries.
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in which A and B are called the influence matrices, and u and q are the vectors containing the nodal potential and flux of

the boundary elements model, respectively.

If a constant potential is prescribed as the boundary condition, no flux will be generated. Thus, the sum of the terms

in each row of A must be zero. This allows the diagonal terms of A, which include the coefficients ci’s, to be calculated

by summing the off-diagonal terms in the same row and reversing the sign.

3.5. Zero-order potential

To calculate the zeroth-order potential associated with steady flow, we define fð0Þ ¼ vif
ð0Þ
. The boundary conditions

for f
ð0Þ

are

rf
ð0Þ
� nð0Þjwall ¼ 0; rf

ð0Þ
� nð0Þjinflow ¼ 1; ð37; 38Þ

rf
ð0Þ
� nð0Þjoutflow ¼ k; rf

ð0Þ
� nð0Þjrigidwall ¼ 0; ð39; 40Þ

and thus, f
ð0Þ

is only dependent on the shell geometry. The distribution of f
ð0Þ

at all of the boundary nodes is

determined by applying the boundary conditions given in Eqs. (37)–(40) to Eq. (36).

3.6. First-order potential

The first-order potential is governed by the Laplace equation and satisfies Eq. (36) which can be decomposed into the

following form:

A11uo þ A12uwr�B11qo�B12qwr ¼ 0; ð41Þ

A21uo þ A22uwr�B21qo�B22qwr ¼ 0; ð42Þ

where uo is a vector of the potential values at the outflow nodes, and uwr=[uw
T ur

T]T is a vector containing the potential

values at the wall nodes uw and the remaining nodes ur. Furthermore, the vectors qo and qwr consist of the nodal fluxes

corresponding to uo and uwr, respectively. Eq. (42) can be solved for uwr to obtain

uwr ¼A�122 ðB21qo þ B22qwr�A21uoÞ: ð43Þ

Using Eq. (43) in Eq. (41) yields

A�uo�B
�qo ¼Cqwr; ð44Þ

where

A� ¼A11�A12A
�1
22 A21; ð45Þ

B� ¼B11�A12A
�1
22 B21; ð46Þ

C¼B12�A12A
�1
22 B22: ð47Þ

By solving Eq. (44) for qo and substituting the result into Eq. (43), one can obtain

uwr ¼Kuo þMqwr; ð48Þ

in which the following definitions are used:

K¼A�122 ðB21B
��1A��A21Þ; ð49Þ

M¼A�122 ðB21B
��1C� þ B22Þ: ð50Þ

The boundary-condition equations (21) and (25) give qr=0. Therefore, Eq. (44) can be simplified to

A�uo�B
�qo ¼C�qw; ð51Þ

and the first-order potential on the wall can be evaluated using Eq. (48):

uw ¼K�uo þM�qw; ð52Þ
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where C
�, K� and M

� are the sub-matrices of C, K and M, respectively, that correspond to the wall nodes. Eq. (52)

illustrates the velocity potential at the wall nodes, which is to be directly determined in terms of the outflow potential and

the flux on the wall. Using the modal expansion series in Eqs. (2) and (3) and inserting Eq. (13) into Eq. (15), one can state

qw ¼�viEn�F _n; ð53Þ

where

Ei;j ¼ ðrf
ð0Þ
� ðnð0Þ � hjÞÞjnode i; ð54Þ

Fi;j ¼ ðej � n
ð0ÞÞjnode i: ð55Þ

Furthermore, Eq. (24) relates the first-order velocity potential and its normal flux at the outflow boundary as follows:

qo ¼�
1

kvi

_uo; ð56Þ

Introducing Eqs. (53) and (56) into Eq. (51) yields the following governing equation for the first-order potential at the

outflow boundary:

1

kvi

B� _uo þ A�uo ¼�viC
�En�C�F _n; ð57Þ

3.6.1. Modal analysis of the first-order potential

Assuming a solution of the form uo ¼ unexpðkvilntÞ, the homogenous parts of Eq. (57) can be rewritten as the

eigenvalue equation

ðB�ln þ A�Þun ¼ 0; ð58Þ

which gives the flow eigenvalues ln and the corresponding mode-shapes un. The flow mode-shapes are indeed the trivial

solutions of the first-order potential that satisfy the homogenous problem. The matrices B� and A� are not symmetric

and thus the adjoint eigenvalue problem of Eq. (58) can be written as

ðB�
T

ln þ A�
T

Þvn ¼ 0; ð59Þ

where the vns are the left eigenvectors. The eigenvectors of Eqs. (58) and (59) satisfy the following bi-orthogonality

relations:

vTn B
�um ¼

1; n¼m;

0; nam;

(
ð60Þ

vTn A
�um ¼

ln; n¼m;

0; nam:

(
ð61Þ

It is a common procedure in modal analysis techniques to write the solution of the non-homogeneous equation (57) as a

sum of the natural mode-shapes; i.e,

uo ¼
XNF

m ¼ 1

umZmðtÞ ¼Ug; ð62Þ

in which NF is the number of flow modes, g is the vector of the generalized modal coordinates of the first-order potential

and U is a matrix whose columns are the aforementioned eigenvectors. Substituting Eq. (62) into Eq. (57), pre-

multiplying by vTn and using the bi-orthogonality relations (60) and (61) results in the following governing equations for

the modal coordinates of the first-order flow:

1

kvi

_g þ Kg¼�viV
T
C�E|fflfflfflffl{zfflfflfflffl}E� n�VT

C�F|fflfflfflffl{zfflfflfflffl}F� _n; ð63Þ

where K is a diagonal matrix, defined as Kn;n ¼ ln, and V is a matrix whose columns are the adjoint eigenvectors

of U.
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4. Coupled fluid–structure dynamics

If the gravitational acceleration is neglected, the unsteady Bernoulli equation for the fluid pressure can be written as

p¼ pi þ
1
2
rðv2i�jrfj

2Þ�r _f; ð64Þ

where pi is the inflow pressure. Substituting Eq. (8) into Eq. (64) results in the following expressions for the zero and

first-order pressures on the shell:

pð0Þ ¼ pi þ
1
2
rv2i ð1�jrf

ð0Þ
j2Þ; ð65Þ

pð1Þ ¼ �rð _f
ð1Þ
þ virf

ð0Þ
� rfð1ÞÞ: ð66Þ

If the ambient pressure on the shell is pa, the virtual work principle allows the generalized structural forces to be

calculated by the following integral over the fluid–shell interface:

si ¼

Z
wall

ðei � n
ð0ÞÞðp�paÞdS �

Z
wall

ðei � n
ð0ÞÞpð1Þ dS þ

Z
wall

ðei � n
ð0ÞÞðpð0Þ�paÞdS: ð67Þ

The generalized structural forces can be evaluated by integrating over the wall boundary elements to obtain

si ¼�r
X

Rij _uj�rvi

X
Sijuj þ s0i

; ð68Þ

where

Rij ¼

Z
Sj

ðei � n
ð0Þ
j ÞNjjJjjdx1 dx2; ð69Þ

Sij ¼

Z
Sj

ðei � n
ð0Þ
j Þðrf

ð0Þ
� JT�1j ½@=@x1 @=@x2 0�TNjÞjJjjdx1 dx2; ð70Þ

s0i ¼

Z
wall

ðei � n
ð0Þ
j Þðp

ð0Þ�paÞdS: ð71Þ

Eq. (68) can be written for all of the structural modes to obtain the following equation:

s¼�rR _uw�rviSuw þ s0; ð72Þ

where R and S are the assembled forms of R and S, respectively. This equation relates the generalized structural forces

to the first-order potential on the wall. Introducing uw from Eq. (52) into Eq. (72), and with the help of Eqs. (53) and

(62), the vector of generalized structural forces can be expressed in terms of the structural and fluid modal coordinates

as follows:

s¼�rðMf
€n þ viCf

_n þ v2i Kf nþ Cf
0 _g þ viKf

0 gÞ þ s0; ð73Þ

where

Mf ¼RM�F; Cf ¼RM�Eþ SM�F; Kf ¼ SM�E; ð74; 75; 76Þ

Cf
0 ¼RK�U; Kf

0 ¼ SK�U: ð77; 78Þ

The combination of Eqs. (4), (63) and (73) gives the following governing equations of the coupled fluid–structure

dynamics:

0 I 0

Iþ rMf Cþ rviCf rCf
0

0 kviF
� I

2
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3
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2
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75þ

�I 0 0

0 Xþ rv2i Kf rviKf
0

0 kv2i E
� kviK

2
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3
75

n�

n

g

2
64

3
75¼ 0

s0

0

2
64

3
75; ð79Þ

where n� ¼ _n. Eq. (79) describes a reduced-order model that can be employed to determine the linear instability of shells

conveying fluid.
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Results in the literature show that the non-linearity of the potential flow model does not have a significant effect on

the instability margins of the coupled fluid–shell system (Lakis and Laveau, 1991). Accordingly, for the cases in which

the potential flow assumption is valid, Eq. (79) may be used for stability analysis of the fluid–shell system. However, due

to the limitations of the modal analysis technique, the major limitation of the obtained model arises from the linear

structural model.
5. Numerical examples

In this section, two examples are provided to verify the results of the present model in stability analysis of fluid-

conveying shells. Then, two examples are considered to examine the application of the model to shells with more

complex geometries. In all examples, the model parameters and structural and flow mode numbers are chosen so that

the results converge to within a maximum 0.1% error.

5.1. Verification; clamped–clamped pipe and cylindrical shell

Many research projects in FSI problems are dedicated to cylindrical pipes and shells. As the first verification example,

the instability of a clamped–clamped cylindrical fluid pipe is considered, and the results are compared with those of

Paı̈doussis (1998). Paı̈doussis (1998) has carried out detailed investigations on the stability of pipes based on Euler–

Bernoulli beam theory for the structural dynamics modeling and slender body theory for the unsteady flow.

Fig. 3 shows a long cylinder with a length-to-radius ratio of L/r=40 and inflow/outflow boundaries at Li/r=5 and

Lo/r=20. The fluid mass ratio is defined as b¼mf =ðmþmf Þ where m and mf are the mass per unit length of the

structure and the fluid. Furthermore, the reference velocity and frequency are defined as v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mf L2

p
and

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðmþmf ÞL4

p
, respectively, where EI is the bending rigidity of the pipe section and L is the pipe length. The

stability of the pipe is studied via the present model, using the lowest three natural structural modes and 10 flow modes.

Figs. 4(a) and (b) show dimensionless values of the frequency o=o0 and damping s=o0 versus the dimensionless flow

speed vi/v0 for the cases b¼ 0:1 and 0:8, respectively. For the case b¼ 0:1, Fig. 4(a) shows that the first three bending

modes of the pipe diverge at the critical velocities vi ¼ 6:32, 9:07, and 12:57. These results are in a very good agreement

with those of Paı̈doussis (1998), which were vi ¼ 6:28, 8:99, and 12:56. For the case b¼ 0:8, Fig. 4(b) shows that when
the flow velocity is increased, a divergence instability occurs at vi ¼ 6:32. Then, the pipe becomes stable at vi ¼ 9:07,
until a flutter instability arises at vi ¼ 9:6. Furthermore, Fig. 4(b) shows a divergence instability at vi ¼ 12:56. Very good
agreement between the present results and those of Paı̈doussis (1998) can be seen.

The second verification example is a cylindrical shell with simply supported ends, which was considered by Amabili

et al. (1999a). The cylinder is made of steel with a Young’s modulus of E=206GPa, a density of r¼ 7850 kg=m3 and a

Poisson’s ratio of n¼ 0:3 and contains flowing water with a density of rf ¼ 1000kg=m3. The length-to-radius ratio of

the cylinder is L/r=2 and the thickness-to-radius ratio is t/r=0.01.

The lowest frequency of the empty shell is associated with the wave number n=5 and the longitudinal half-waves

m=1. Amabili et al. (1999a) presented results of a stability analysis on the cylinder, considering two modes with n=5

and m=1, 2 using the models proposed by Paı̈doussis and Denise (1972) and by Weaver and Unny (1973). The present

fluid–structure model is employed with the flow boundary element model for eight flow modes, as shown in Fig. 5, to

determine the stability conditions of the shell. Fig. 6 shows a comparison of the obtained results from this stability
vi

Fig. 3. Boundary element model of the clamped–clamped beam.
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analysis of the cylinder and results given by Amabili et al. (1999a). This figure shows the dimensionless values of the

damping s=o0 and frequency o ¼o=o0 versus the dimensionless flow speed v ¼ vi=v0, where o0 ¼ ðp2=L2Þ½D=rt�0:5,

v0 ¼Lo0 and D¼ Et3=12ð1�n2Þ. The present results are in very good agreement with those obtained by the model of

Weaver and Unny (1973). Fig. 6 shows that the shell experiences a divergence at v ¼ 3:63. If the flow speed increases,

then the cylinder will be re-stabilized at v ¼ 4:73, and then a coupled-mode flutter occurs at v ¼ 5:12.
Fig. 7 shows the damping and frequency of the fluid–shell system versus the dimensionless flow speed when the eight

lowest structural modes are used. Fig. 7 shows that there is no stable region after the first mode diverges, and the higher

structural modes will diverge.
5.2. A cubic shell

The boundary element model of a shell made of four square plates is shown in Fig. 8. The thickness ratio of the plate

is t/L=0.005, where L stands for the plate length. The shell is clamped at both ends, and its material properties and the

reference values of frequency and flow speed are defined as for the aforementioned cylindrical shell. The fluid–structure

model is constructed using the eight lowest structural modes and eight flow modes. Fig. 9 illustrates the four lowest

natural mode shapes of the cube along with the corresponding dimensionless natural frequencies. Fig. 10 shows the

dimensionless damping and frequency of the structural modes versus the dimensionless flow speed. The results show

that the first structural mode diverges at v ¼ 0:42.



Fig. 5. Boundary element model of the simply supported cylindrical shell.
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5.3. An elbow shell

The last example is a right-angle elbow shell, as shown in Fig. 11. The viscosity of an actual fluid may cause rotational

flow and flow separation in an elbow shell; however, using the proposed model for an approximately inviscid flow

provides satisfactory results for the stability margin of the fluid–shell system. The main purpose of presenting this

problem is to illustrate that the model developed here is capable of modeling general shell geometries. The elbow has a
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Fig. 8. Boundary elements model of the clamped cubic shell.
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circular section and is made of aluminum with a Young’s modulus of E=70GPa, a density of r¼ 2700 kg=m3 and a

Poisson’s ratio of n¼ 0:3. The thickness-to-radius ratio of the shell is t/r=0.012, and it is clamped at both ends.

The dimensionless parameters are defined as in the cylindrical shell example, and the length considered is L¼ 4rþ pr=2.
The 10 lowest modes of the shell are used for structural modeling, and the four lowest modes are depicted in

Fig. 12. The stability margin of the shell is investigated through the plots of dimensionless damping and frequency of

the structural modes versus dimensionless flow speed shown in Fig. 13, which shows that the first and second structural

modes of the shell diverge at v ¼ 2:86.
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5.4. The effect of inflow/outflow distances

The inflow/outflow distances Li and Lo are two major parameters of the present flow model. Properly choosing the

minimum values of these parameters avoids the need for a large boundary element model, while the accuracy and

convergence of the results are guaranteed. Numerous numerical experiments were performed on the examples above to

investigate the convergence of the results as Li and Lo increase. For instance, the results of the stability analysis of the

cylindrical shell with three flow modes with Li=r¼Lo=r¼ 0 (case 1), Li/r=0.5, Lo/r=4 (case 2) and Li/r=2, Lo/r=10

(case 3) are given in Fig. 14. The graphs show that the obtained results converge more rapidly as the inflow/outflow

distances increase. Fig. 14 shows that the model of case 2 gives results that are very close to the actual values. These case

studies were also performed on the other examples, and similar results were achieved. Based on the numerical studies of

the effect of increasing Li and Lo on the instability conditions, we observed that the results converge very quickly as Li is

increased. Furthermore, if Lo is chosen to be two to three times the outlet diameter, the results converge and match the

actual values. The case studies show that the effect of the inflow distance on the obtained results is much less than that

of the outflow distance and that choosing Li to be about 0.1Lo yields satisfactory results.
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6. Conclusion

A boundary element model was utilized to analyze unsteady potential flow in flexible, fluid-conveying shells. Using an

inflow/outflow model, the eigenvalues and mode shapes of the flow in the shell were calculated, and a reduced-order

model was developed, which relates the unsteady pressure on the shell to the shell vibrations. The structural dynamics

were modeled with modal analysis, and combining this model with the flow field equations yielded the coupled fluid–

structure field equations. The results of the developed model were verified against results in the literature. Moreover, the

model’s capability to perform stability analysis on shells with arbitrary geometries was examined. The major advantage

of the present model is the use of the boundary element method along with the modal analysis technique for the fluid

and structural dynamics modeling, which provides a reduced-order model for the fluid–structure interaction in the shell.

The model is presented with a general formulation, which can easily be used for shells of arbitrary geometry, structural

layout, properties and supports.
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